Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(16): 4228-4235, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706910

RESUMO

A practical guide for the easy implementation of a Fourier light-field microscope is reported. The Fourier light-field concept applied to microscopy allows the capture in real time of a series of 2D orthographic images of microscopic thick dynamic samples. Such perspective images contain spatial and angular information of the light-field emitted by the sample. A feature of this technology is the tight requirement of a double optical conjugation relationship, and also the requirement of NA matching. For these reasons, the Fourier light-field microscope being a non-complex optical system, a clear protocol on how to set up the optical elements accurately is needed. In this sense, this guide is aimed to simplify the implementation process, with an optical bench and off-the-shelf components. This will help the widespread use of this recent technology.

2.
Opt Express ; 30(1): 511-521, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35201227

RESUMO

We report a scanning non-confocal fluorescence microscopy scheme that provides images with optical sectioning and with a lateral resolution that surpasses by a factor of two the diffraction resolution limit. This technique is based on the type-1 microscopy concept combined with patterned illumination. The method does not require the application of phase-shifting or post-processing algorithms and provides artifact-free superresolved 3D images. We have validated the theory by means of experimental data.

3.
Biomed Opt Express ; 9(1): 335-346, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29359107

RESUMO

In this work, Fourier integral microscope (FIMic), an ultimate design of 3D-integral microscopy, is presented. By placing a multiplexing microlens array at the aperture stop of the microscope objective of the host microscope, FIMic shows extended depth of field and enhanced lateral resolution in comparison with regular integral microscopy. As FIMic directly produces a set of orthographic views of the 3D-micrometer-sized sample, it is suitable for real-time imaging. Following regular integral-imaging reconstruction algorithms, a 2.75-fold enhanced depth of field and [Formula: see text]-time better spatial resolution in comparison with conventional integral microscopy is reported. Our claims are supported by theoretical analysis and experimental images of a resolution test target, cotton fibers, and in-vivo 3D-imaging of biological specimens.

4.
Opt Express ; 17(16): 13810-8, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19654787

RESUMO

In modern high-NA optical scanning instruments, like scanning microscopes, the refractive-index mismatch between the sample and the immersion medium introduces a significant amount of spherical aberration when imaging deep inside the specimen, spreading out the impulse response. Since such aberration depends on the focalization depth, it is not possible to achieve a static global compensation for the whole 3D sample in scanning microscopy. Therefore a depth-variant impulse response is generated. Consequently, the design of pupil elements that increase the tolerance to this aberration is of great interest. In this paper we report a hybrid technique that provides a focal spot that remains almost invariant in the depth-scanning processing of thick samples. This invariance allows the application of 3D deconvolution techniques to that provide an improved recovery of the specimen structure when imaging thick samples.


Assuntos
Algoritmos , Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...